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The paper deals with the numerical investigation of the steady convective flow in a
horizontal channel of rectangular cross-section subjected to a uniform longitudinal
temperature gradient imposed at the walls. It is shown that at zero Prandtl number
the solution of the problem corresponds to a plane-parallel flow along the channel
axis. In this case, the fluid moves in the direction of the imposed temperature gradient
in the upper part of the channel and in the opposite direction in the lower part. At
non-zero values of the Prandtl number, such solution does not exist. At any small
values of Pr all three components of the flow velocity differ from zero and in the
channel cross-section four vortices develop. The direction of these vortices is such
that the fluid moves from the centre to the periphery in the vertical direction and
returns to the centre in the horizontal direction. The stability of these convective flows
(uniform along the channel axis) with regard to small three-dimensional perturbations
periodical in the direction of the channel axis is studied. It is shown that at low values
of the Prandtl number the basic state loses its stability due to the steady hydrodynamic
mode related to the development of vortices at the boundary of the counter flows.
The growth of the Prandtl number results in the strong stabilization of this instability
mode and, beyond a certain value of the Prandtl number depending on the cross-
section aspect ratio, a new steady hydrodynamic instability mode becomes the most
dangerous. This mode is characterized by the localization of the perturbations near
the sidewalls of the channel. At still higher values of the Prandtl number, the spiral
perturbations (rolls with axis parallel to the temperature gradient) become the most
dangerous modes, at first the oscillatory spiral perturbations and then the Rayleigh-
type steady spiral perturbations. The influence of the channel width on these different
instabilities is also emphasized.

1. Introduction
A great amount of microelectronic and opto-electronic devices are manufactured

by direct solidification of molten material. During the growth processes the molten
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material is subject to varying heat- and mass-transfer conditions which, in turn,
profoundly affect the microscopic composition of the melt-grown crystals (see, e.g.
Carruthers 1977). It is therefore necessary to understand the underlying physical mech-
anisms determining the fluid dynamics and its stability. In many cases, preventing the
primary instability (the first bifurcation of the flow) would mean stabilizing the process
as a whole, which is extremely desirable for various crystal growth technologies.

Confined shallow cavity heated from a side is one of the models for the horizontal
Bridgman configuration, a popular type of melt-growth process. In this system, the
temperature gradient is orthogonal to the gravity, and then convection arises for any
value of the temperature difference. This configuration is the focus of this study,
and the transitions in a channel flow subject to a uniform temperature gradient are
expected to qualitatively reproduce the scenario of appearance of the instabilities in
the melt flow for such a growth method.

The Bridgman configuration has been mathematically modelled by numerous
researchers. The models couple the effects of transient fluid dynamics and energy
and mass transfer within the system. Over the years, the studies concerned analytical
(Cormack, Leal & Imberger 1974; Gill 1974), as well as numerical linear stability
analyses for the one-dimensional velocity and temperature profiles (Hart 1972, 1983;
Gershuni, Zhukhovitskii & Myznikov 1974a, b; Laure 1987; Laure & Roux 1987;
Kuo & Korpela 1988). Numerous workers (Winters 1988; Roux, Ben Hadid &
Laure 1989a, b; Skeldon, Riley & Cliffe 1996; Gelfgat, Bar-Yoseph & Yarin 1999)
stimulated by the GAMM workshop (Roux 1990) carried out two-dimensional
numerical simulations, and more recently, results from three-dimensional numerical
simulations were given by Henry & Buffat (1998), Wakitani (2001) and Henry &
Ben Hadid (2007a, b) These works addressed the effect of the main parameters, the
Grashof number and the cavity aspect ratios (length/height and width/height), on
the structure and stability of the low-Prandtl-number flows. A main feature of the
results is that the critical Grashof number for the occurrence of time-dependent flows
is strongly dependent on the Prandtl number and the cavity aspect ratios.

The linear stability of the base state in the infinite extent horizontal layer has been
an active area of research since the early work of Gill (1974), but there is now a
clear agreement between the results of the different studies. The one cell circulation
(Hadley circulation) loses its stability when the Grashof number exceeds some critical
value which is found to depend largely on the Prandtl number. Three perturbing
mechanisms are found to occur for rigid conducting boundaries: two-dimensional
steady hydrodynamic modes, three-dimensional oscillatory spiral waves and three-
dimensional Rayleigh modes. The hydrodynamic mode which corresponds to a shear
instability is the most dangerous for Pr< 0.14 and generates steady rolls with the axis
perpendicular to the temperature gradient. The oscillatory spiral mode which occurs in
a narrow range of Prandtl numbers 0.14 <Pr < 0.44, corresponds to the development
of internal waves and leads to the formation of oscillatory rolls with the axis parallel to
the temperature gradient. The potentially unstable temperature stratification created
by the basic flow near the upper and lower horizontal boundaries, makes possible the
appearance of the Rayleigh–Bénard like instability for large values of the Grashof
number. This type of instability prevails for large Prandtl numbers Pr> 0.44, and
does not exist in the case of insulated horizontal boundaries. In this last case, the
hydrodynamic modes prevail for Pr< 0.033 and the oscillatory three-dimensional
spiral modes become dominant for 0.033 < Pr< 0.2.

Concerning the experiments, the main focus has been on time-dependent
phenomena and there appear to be only few detailed experimental studies in the
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published literature. The pioneer work of Hurle, Jakeman & Johnson (1974) reports
measurements of the motion in a cavity with small aspect ratios 2.73 × 1.18 × 1
(length × width × height) and finds that at moderate Grashof number the flow is
three-dimensional in nature, and is symmetric with respect to the vertical longitudinal
midplane of the cavity. In contrast Hung & Andereck (1990) used a cavity with
large aspect ratios (17.89 × 17.78 × 1) to generate an approximately two-dimensional
flow. The main feature of their results is that the steady long-scale convective loop
loses stability to a corotating multicell state. Braunsfurth et al. (1997) performed
experiments in gallium in a cavity with moderate aspect ratios. They compare their
observations from experimental study with the standard Hadley circulation solution
and with the results of two-dimensional numerical calculations. They found a good
agreement between the three approaches.

A small number of three-dimensional time-dependent calculations have been
performed for differentially heated cavity. In crystal growth processes as well as in
laboratory experiments, the flows are three-dimensional, and thus studies extending
the purely two-dimensional approaches to take into account the three-dimensional
features which develop not only near the endwalls but also in the core of the enclosure
(Henry & Buffat 1998) are needed. Most studies, following the GAMM workshop
(Roux 1990), have considered the flow developing in the longitudinal vertical plane.
To take into account the transverse variations of the flow in the core region of the
enclosure, we derived a model which considers the three components of the velocity
in the cross-section of an infinite length channel. Both steady state calculations and
stability analyses with regard to fully three-dimensional perturbations are performed.
To our knowledge, this is the first modelling study of this specific system. The relevant
dimensionless numbers are the well-known Prandtl (Pr) and Grashof (Gr) numbers,
and the transverse aspect ratio l (width/height).

In this paper, we first determine the steady flow and temperature field representing
the base state in the rectangular cross-section of a horizontal channel submitted
to a uniform and longitudinal temperature gradient. We then perform a linear
stability analysis based on the sensitivity of the base state to small three-dimensional
perturbations periodical in the direction of the channel axis, and investigate the
dependence of the first bifurcation and the perturbation structure on the transverse
aspect ratio and the Prandtl number.

2. Governing equations and boundary conditions
We consider a flow in a horizontal channel with a rectangular cross-section of

width L and height H (figure 1). An aspect ratio is defined by l =L/H . A uniform
temperature gradient (∇T )∗ parallel to the channel axis is imposed on the channel
walls. The flow arising in this situation is described by the conventional Navier–
Stokes equations coupled to the energy equation. In the Boussinesq approximation,
these equations are

∂V ∗

∂t∗ + (V ∗ · ∇∗)V ∗ = − 1

ρ
∇∗P ∗ + ν∇∗2V ∗ + gβ T ∗ ey, (2.1)

∂T ∗

∂t∗ + (V ∗ · ∇∗T ∗) = κ∇∗2T ∗, (2.2)

∇∗ · V ∗ = 0. (2.3)

The boundary conditions are no-slip conditions and a fixed temperature distri-

bution (purely conducting walls): V ∗|
Γ

= (�U ∗, W ∗)|
Γ

= 0, T ∗|
Γ

= (∇T )∗ z∗. Here
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Figure 1. Studied configuration.

�U ∗ = (U ∗, V ∗) is the transverse velocity, W ∗ is the longitudinal velocity, ey is the
unit vector directed vertically upwards, z∗ is the coordinate in the direction of the
channel axis and Γ is the boundary of the channel cross-section S. The quantities
with a star refer to dimensional quantities.

Using H , H 2/ν, ν/H , ρ0ν
2/H 2 and (∇T )∗H as scales for length, time, velocity,

pressure and temperature, respectively, the governing equations for the problem are

∂V
∂t

+ (V · ∇)V = −∇P + ∇2V + Gr T ey, (2.4)

∂T

∂t
+ (V · ∇T ) =

1

Pr
∇2T , (2.5)

∇ · V = 0, (2.6)

where V = (�U, W ) = (U, V, W ), T , x, y and z are the dimensionless variables, Pr = ν/κ

is the Prandtl number and Gr = gβ(∇T )∗H 4/ν2 is the Grashof number. The associated
boundary conditions applied on x = ± l/2 and y = ±1/2 are V =0 and T = Tc, where
Tc is the conductive temperature.

3. Basic flow
3.1. Basic flow equations

We look for the basic flow solution in which the velocity and temperature deviations
from the conductive state do not depend on z:

�U = �U (x, y), W = W (x, y), T = Θ(x, y) + z.

Equations (2.4)–(2.6) take the form:

∂�U

∂t
+ (�U · ∇s)�U = −∇sP + ∇2

s
�U + Gr (Θ + z) ey, (3.1)

∂W

∂t
+ (�U · ∇sW ) = −∂P

∂z
+ ∇2

sW, (3.2)

∂Θ

∂t
+ (�U · ∇sΘ) + W =

1

Pr
∇2

sΘ, (3.3)

∇s · �U = 0, (3.4)
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where ∇s is the operator of differentiation in the plane (x, y). It follows from (3.2)
that P is a linear function of z (∂2P/∂z2 = 0), and we obtain from (3.1) that

∇s

∂P

∂z
= Gr ey. (3.5)

Projecting (3.5) on the x and y axes, we obtain that

P = Gr y z + Π(x, y) + C z, (3.6)

where C is a constant. Accounting for (3.6), we can rewrite (3.1)–(3.4) in the form:

∂�U

∂t
+ (�U · ∇s)�U = −∇sΠ + ∇2

s
�U + Gr Θ ey, (3.7)

∂W

∂t
+ (�U · ∇sW ) = −Gr y − C + ∇2

sW, (3.8)

∂Θ

∂t
+ (�U · ∇sΘ) + W =

1

Pr
∇2

sΘ, (3.9)

∇s · �U = 0. (3.10)

The constant C is determined from mass conservation in the channel cross-section S,∫
S
WdS = 0, which gives:

C =
1

S

∫
S

∇2
sWdS =

1

S

∮
Γ

∂W

∂n
dΓ, (3.11)

where n is the normal to the channel surface. For the transverse flow in the cross-
section, it is convenient to introduce the stream function ψ and the vorticity Ω , which

are such that �U = (∇ × ψez), (∇ × �U )z = − ∇2
sψ = Ω , where ez is the unit vector in the

direction of the channel axis.

3.2. Theoretical developments

In the general case, it can be shown that the problem under consideration does not
allow the solutions which correspond to a plane-parallel flow. Indeed, for such a

flow �U = ψ = Ω = 0 and, as one can see by applying the curl operator to (3.7), the
temperature deviation from the conductive state Θ does not depend on x. Then, as
follows from (3.9), W does not depend on x too and, due to the no-slip boundary
condition, W = 0 all over the volume, which is in contradiction with (3.8). In contrast

to that, for Pr= 0, there exists a steady plane-parallel flow solution for which �U , ψ ,
Ω , Θ and C are equal to zero, and W is determined by the problem:

∇2
sW = Gr y, W |Γ = 0. (3.12)

Thus, at Pr= 0 the problem is linear and the flow velocity is proportional to Gr. W

is also even with respect to the horizontal coordinate and odd with respect to the
vertical coordinate (the origin of the coordinate system is located at the centre of
the cross-section). In the lower part of the channel, the fluid moves in the direction
of the imposed temperature gradient and in the upper part, it moves in the opposite
direction.

To better understand the influence of the parameters on the steady flow, we can
also derive some asymptotic expansions. First, for small but non-zero values of the
Prandtl number, we can look for a steady solution in the form of series with respect
to Pr:

W = W0 + PrW1 + · · · , (3.13)
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Θ = PrΘ1 + · · · , (3.14)

ψ = Prψ1 + · · · , (3.15)

Ω = PrΩ1 + · · · . (3.16)

At zero order, W0 is the plane-parallel flow solution proportional to Gr obtained at
Pr= 0. From the first-order expansion, we obtain:

∇2
sΩ1 = −Gr

∂Θ1

∂x
, (3.17)

∇2
sW1 = J(W0, ψ1), (3.18)

∇2
sΘ1 = W0, (3.19)

where J (q, q ′) = (∂q/∂x)(∂q ′/∂y) − (∂q/∂y)(∂q ′/∂x). We see that for small values of
the Prandtl number, the transverse components of the velocity (related to Ω) are of
the first order with respect to Pr and proportional to Gr2. Concerning the longitudinal
velocity W , we find that the first-order term W1 is proportional to Gr3 so that the
small Prandtl number correction with respect to W0 still scales as Pr Gr2. From these
observations, we can conclude that the expansion in series with respect to Pr is of
limited practical interest for the calculation of the steady solutions for Pr �= 0 as this
expansion is only valid for not too large Gr. We also see that the linearity of the
solution with respect to Gr at Pr= 0 fails at the first order in Pr.

Another asymptotic expansion can be obtained for finite Pr, but small Gr. In that
case, the steady solution can be expressed in the form of series with respect to Gr.
It is thus found that the expansions for W and Θ only contain odd powers of Gr

and the expansion for �U only even powers, i.e. the structure of the transverse flow
does not depend on the direction of the imposed temperature gradient. For all orders
of expansion, the constant C turns out to be zero. Therefore, the solution has well-
defined parities with respect to the coordinates, which for the direction x corresponds
to a symmetry with respect to the x = 0 plane and for the direction y to a symmetry
with respect to the y =0 axis. Certainly this does not mean that the solutions not
having such symmetries cannot exist. However, they are absent, at least for small
enough Gr.

3.3. Basic flow solutions

The basic flow equations (3.7)–(3.10) were discretized using a finite difference method
with second-order spatial derivatives. Two different methods were used to calculate the
steady-state solutions: either the system of equations was integrated in time until the
steady state was reached, or the system of stationary equations (obtained by assuming
the time derivatives to be zero) was solved by the Newton method. In the case Pr =0,
the problem is reduced to a single Poisson equation for the longitudinal velocity
component W , which was solved using the iterative SOR (successive overrelaxation)
method. Typical grids of 101 × 101 points for l = 1 have been used to calculate the
basic solutions (see § 4.1 where global tests concerning threshold values are given).
Solutions which have been obtained close to the thresholds for different values of Pr
and l are presented in the following.

For zero Prandtl number, the isolines of the longitudinal flow velocity for the
channels with l =1 and l = 4 are displayed in figures 2 and 3. As expected, the fluid
moves from the warmer area to the colder area in the upper part of the channel and
in the opposite direction in the lower part. From the results for l =4 (figure 3), we see
that the influence of the sidewalls is effective on each side on a horizontal distance of
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Figure 2. Isolines of the longitudinal component of the basic velocity at the critical
threshold (Grc =55 942) for Pr =0 and l = 1.
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Figure 3. Isolines of the longitudinal component of the basic velocity at the critical
threshold (Grc = 8503) for Pr = 0 and l = 4.

the order of the height of the channel. As a consequence, for l = 4, there is a central
zone in the channel where the velocity is independent of x (determining identical
vertical profiles of velocity similar to that obtained in the infinite layer), whereas
for l =1 (figure 2) such zone is absent and the vertical profiles continuously change
with x.

For non-zero Prandtl number values, the results are still presented for l = 1 (figure 4)
and l = 4 (figure 5). For l = 1, we see that the longitudinal flow leads to the appearance
of a warm layer in the upper part of the channel and a cold layer in the lower part,
whereas at the sidewalls the temperature remains the same (figure 4c). Thus, a
difference in the temperatures of the central part of the channel and the sidewalls
arises. As a result, an ascending flow is formed in the centre of the upper part of
the channel and a descending flow in the centre of the lower part, which leads to the
development of a transverse four-vortex flow in the channel (figure 4a). The vortex
direction is such that the fluid moves from the centre to the periphery in the vertical
direction and returns to the centre in the horizontal direction. The intensity of the
transverse flow is proportional to Pr, and at large enough values of the Prandtl
number this flow leads to the modification of the longitudinal flow (figure 4b). Similar
results are obtained for l = 4. From figure 5(a) where the streamlines of the transverse
flow are plotted, we can see that the transverse flow really arises due to the sidewall
effect as the vortex centres are localized close to the sidewalls. As a consequence,
the modification of the longitudinal flow by the transverse flow also occurs near the
sidewalls (figure 5b).
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Figure 4. Streamlines of the basic transverse flow (a), isolines of the basic longitudinal flow
velocity (b) and isolines of the basic temperature field (c) at the critical threshold (Grc = 66 571)
for Pr = 0.1 and l = 1.

4. Stability of the basic flow
4.1. Perturbation equation problem

We now consider the stability of the convective flows obtained numerically in the
previous section. To study the stability of these steady flows which are uniform in
the direction of the channel axis, we analyse the behaviour of small normal-mode
perturbations periodic in the z direction:

V = V 0 + V ′, P = P0 + P ′, T = T0 + Θ ′, (4.1)

(V ′, P ′, Θ ′) = (�v, p, θ)eikz+λt , (4.2)

where k is the wavenumber in the z direction and λ= λr + iλi is a complex growth
rate. The linearized system of equations which describes the temporal evolution of
these perturbations has the following form:

λu + U0

∂u

∂x
+ u

∂U0

∂x
+ V0

∂u

∂y
+ v

∂U0

∂y
+ ikW0u = −∂p

∂x
+ ∇2

su − k2u, (4.3)

λv + U0

∂v

∂x
+ u

∂V0

∂x
+ V0

∂v

∂y
+ v

∂V0

∂y
+ ikW0v = −∂p

∂y
+ ∇2

s v − k2v + Gr θ, (4.4)

λw + U0

∂w

∂x
+ u

∂W0

∂x
+ V0

∂w

∂y
+ v

∂W0

∂y
+ ikW0w = −ikp + ∇2

sw − k2w, (4.5)
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Figure 5. Streamlines of the basic transverse flow (a), isolines of the basic longitudinal flow
velocity (b) and isolines of the basic temperature field (c) at the critical threshold (Grc = 40 029)
for Pr = 0.308 and l =4.

λθ + U0

∂θ

∂x
+ u

∂T0

∂x
+ V0

∂θ

∂y
+ v

∂T0

∂y
+ ikW0θ + w =

1

Pr
∇2

s θ − k2

Pr
θ, (4.6)

∂u

∂x
+

∂v

∂y
+ ikw = 0. (4.7)

Here U0, V0, W0 and T0 are the velocity components and the temperature of the basic
flow, u, v and w are respectively the horizontal, vertical and longitudinal components
of the velocity perturbations, θ is the temperature perturbation and p is the pressure
perturbation. The perturbations of velocity and temperature vanish at the boundaries.
As follows from (4.6), at Pr= 0 the temperature perturbations vanish and the term
responsible for the buoyancy force in (4.4) is absent.

The discretization of the perturbation equations by a finite difference method
leads to the generalized algebraic eigenvalue problem AX = λBX , where the matrix
A is complex and has a band structure, the matrix B is diagonal, with part of
the diagonal elements equal to unity and the others equal to zero, and X is the
vector of the unknown perturbations. To solve this problem and thus obtain the
eigenvalues and the corresponding eigenvectors (fields of velocity, temperature and
pressure perturbations), a Newton–Raphson method is used. This method, however,
needs to have a first guess of the eigenvalue and eigenvector which are looked
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Pr = 0 Pr = 0.1

Nx × Ny Grc kc Grc kc

45 × 45 64 365 1.1091 69 127 1.2448
65 × 65 58 437 1.1791 67 438 1.2754
83 × 83 56 767 1.2004 66 868 1.2863

101 × 101 55 942 1.2114 66 571 1.2919
Spectral method 55 930 1.2233 66 183 1.3007

31 × 31

Table 1. Variations of the critical Grashof number Grc and the associated critical wavenumber
kc of the first steady bifurcation at various grid resolutions, for l = 1 and two values of the
Prandtl number, Pr = 0 and 0.1.

for. This first guess is obtained through a direct numerical simulation based on
the time evolution of the unsteady linearized equations. Starting from some initial
state, the computation is continued until the evolution of the perturbation in time
is only determined by the most dangerous mode. It is this mode, together with the
eigenvalue and frequency which can be deduced from the final time evolution, which
are introduced in the Newton–Raphson method. Finally, neutral perturbations are
then obtained from the condition Re (λ) = 0, where Re denotes the real part. For
more details on the methods, see the paper by Lyubimov, Lyubimova & Morozov
(2001) where the software package including these methods is presented.

To check the grid convergence, calculations with four different meshes were
performed for l = 1 and two Prandtl numbers, Pr =0 and 0.1. The results, given by the
critical Grashof number and the critical wavenumber are summarized in table 1. All
these grids give the same steady instability, but the variations of the critical Grashof
number and the critical wavenumber indicate a small-grid dependence. However, the
results of the finest grid 101 × 101 agree well with those obtained with a second code
based on a spectral Galerkin method using a 31 × 31 Gauss–Lobatto–Legendre point
distribution (Touihri, Ben Hadid & Henry 1999; Vaux, Ben Hadid & Henry 2006).
The grid 101 × 101 was then estimated to be sufficient to give accurate solutions for
l =1. Such grid was chosen to perform the calculations for l = 1 reported in this work,
and the grid was further refined in the x direction for larger l.

4.2. Fluctuating kinetic energy equation

In order to get some physical insight into the stability results, it is often interesting
to perform energy analyses (Kaddeche, Henry & Ben Hadid 2003; Henry et al. 2008).
For that, by multiplying the linear stability equations (4.3)–(4.5) by �v∗ (the complex
conjugate of the velocity perturbation) and after integration on the cross-section S

and some simplifications, an equation giving the rate of change of the fluctuating
kinetic energy can be derived. From this equation, for any instabilities at their critical
thresholds (Re (λ) = 0), normalized kinetic energy budgets can be obtained which we
can write as

E′
s + E′

b = 1, (4.8)

where E′
s = − Re(Σ3

i=1Σ
2
j=1

∫
S
vj

∂V0i

∂xj
v∗

i dx dy)/|Ed | are the productions of fluctuating

kinetic energy by shear of the basic flow and E′
b = Re(

∫
S
Gr θ v∗ dx dy)/|Ed | is

the production of fluctuating kinetic energy by buoyancy, all these terms being
normalized by the viscous dissipation of fluctuating kinetic energy, Ed = Re(Σ3

i=1Σ
3
j=1
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Figure 6. Isolines of the perturbation kinetic energy averaged in the z direction at the
critical threshold (Grc = 55 942) for Pr = 0 and l = 1.

∫
S

∂2vi

∂x2
j

v∗
i dx dy). In these expressions we have denoted the basic flow [U0, V0, W0]

(x, y, z) by V0i
(xi) and the perturbations [u, v, w](x, y, z) by vi(xi).

One important shear term is generally the term related to the vertical variation
of the basic longitudinal velocity, E′

sy = − Re(
∫

S
v ∂W0

∂y
w∗ dx dy)/|Ed |, which is the

only term in the case of the infinite layer (Kaddeche et al. 2003). This term is
obtained by integration of the spatial field Sy = Re(− ∂W0

∂y
v w∗)/|Ed |, which can itself be

decomposed into two terms, M = (− ∂W0

∂y
) and F = Re(v w∗)/|Ed |, respectively related

to the basic flow and the fluctuating flow [E′
sy = (

∫
S
Sy dx dy) = (

∫
S
M F dx dy)].

5. Stability results
5.1. Zero Prandtl number

In the zero Prandtl number case, the temperature field is frozen and the instability
is of hydrodynamic type; it is related to the development of vortices (with the axis
parallel to x) at the boundary between the counter flows taking place in the upper
and lower parts of the channel. As one can see from figure 6 where the isolines of the
kinetic energy of the perturbations at threshold averaged in the z direction are plotted
for l = 1, the kinetic energy of the perturbations is maximal at the channel axis.

The neutral curves Gr(k) for the case l = 1 at Pr = 0 are plotted in figure 7. As one
can see, the most dangerous perturbations are steady and they keep the symmetry
of the basic flow with respect to the x = 0 plane. The variations of the critical
Grashof number and wavenumber of the most dangerous perturbations with the
transverse aspect ratio l for zero Prandtl number are shown in figure 8. It is found
that the decrease of the transverse aspect ratio l substantially stabilizes the flow
and the perturbations with larger wavelength become the most dangerous. With the
increase of the aspect ratio, the critical parameters asymptotically approach the values
obtained in the case of the infinite layer (infinite extent in both x and z directions).

5.2. Non-zero Prandtl number

5.2.1. Hydrodynamic instability mode

We now consider the case of non-zero values of the Prandtl number. The results
show that the steady hydrodynamic instability mode, which is the only instability
mechanism for Pr = 0, still remains the most dangerous for small non-zero values of
the Prandtl number. The dependence of the critical Grashof number on the Prandtl
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Figure 7. Neutral curves Gr(k) for Pr = 0 and l = 1. Solid line: steady mode keeping the
symmetry with respect to the x = 0 plane; dashed line: steady mode breaking this symmetry.
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Figure 8. Critical Grashof number Grc (solid line) and wavenumber kc (dashed-dotted line)
of the most dangerous perturbations versus the channel aspect ratio l for Pr = 0. The dashed
lines correspond to the critical values of the Grashof number and wavenumber for the case of
the infinite horizontal layer.

number for this mode is shown in figure 9 for the channel with l = 4. For comparison,
we also plot the curve Grc(Pr) for the hydrodynamic mode in the case of the infinite
layer (l → ∞). It is known that in the case of the infinite layer, a strong stabilization
of the hydrodynamic instability mode is observed with the increase of the Prandtl
number. This stabilization is related to the fact that at finite values of Pr, a stable
temperature stratification is created at mid-height of the cavity (figure 5c) in the
domain where the perturbation vortices are triggered, which makes more difficult the
vortices development. The curve Grc(Pr) obtained for l = 4 is characterized by two
distinct portions of curves marked in figure 9 as AB and BC. The value of Pr which
corresponds to the transition between these two portions of curves is denoted as Prt .

In order to understand the changes which occur at Prt , an energy analysis is
performed for three values of Pr (Pr = 0.10665, 0.1067 and 0.11), close below and
above Prt . For the three cases, it is found that the destabilization comes from the
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Figure 9. Critical Grashof number Grc for the hydrodynamic modes versus the Prandtl
number Pr for l = 4 (solid line) and the infinite horizontal layer (dashed line). AB : steady
hydrodynamic mode; BC : steady sidewall hydrodynamic mode.

shear of the basic flow and is related to the term E′
sy which dominates all the other

shear energy terms (by at least a factor 30), whereas buoyancy is stabilizing. The
analysis of this dominant shear energy term is presented in figure 10 through the
plots of the shear energy field Sy and its two components M and F . As it is clear
from figure 10(a, d) where the plots are given for Pr =0.10665 (close below Prt ), for
the part AB of the curve the mechanism of instability is the same as in the case of
the infinite layer, with a destabilization due to shear at the boundaries between the
counter flows in the central part of the cavity. The part BC of the curve corresponds
to a different instability mechanism. The destabilization is still related to the shear
which exists at the boundary between the counter flows, but now the vortices located
near the sidewalls (figure 5a) appear to modify the repartition of shear and to induce
a change in the development of the perturbations. Indeed, the plots of Sy , M and F

displayed in figures 10(b, e) and 10(c, f ) for Pr= 0.1067 and 0.11, respectively, show
that two peaks appear in the shear energy field near the sidewalls in the regions where
the counter-rotating vortices interact whereas the contribution in the central part of
the cavity decreases, so that for Pr = 0.11 the contribution of the two shear energy
peaks is largely dominant. Moreover, the plots of M and F reveal that the increase
of the two peak contribution is connected to the shear M which becomes slightly
dominant near the sidewalls, but is dominated by the concomitant rapid growth of
the velocity disturbances F in this sidewall region. This sidewall shear instability is
absent in the case of the infinite layer. As it is clear from figure 9, with further growth
of the Prandtl number the sidewall shear instability is strongly stabilized too. The
reason for this stabilization is the same as for the usual hydrodynamic instability
existing in the case of the infinite layer.

The curves Grc(Pr) and kc(Pr) for the channel with l = 4 are displayed in figure 11
for Pr < 0.2, in the domain of Prandtl number where the transition from the usual
hydrodynamic mode to the sidewall instability mode occurs. We see that the transition
is accompanied by a sharp decrease of the wavenumber which reaches a minimum
and then starts to grow.

Figure 12 illustrates the effect of the decrease of the cross-section width l on the
steady flow destabilization by the hydrodynamic modes. As one would expect, the
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Figure 10. Three-dimensional views of the shear energy field Sy (a–c) and isolines of its
components M (first plot) and F (second plot) (d–f ) in the cross-section S, obtained from
the basic flow and the perturbations at Grc for l = 4 and three values of the Prandtl number,
Pr = 0.10665 (a, d ), Pr = 0.1067 (b, e) and Pr =0.11 (c, f ). For M , the maximum isoline is
1000 for case (d ), 1200 for case (e) and 1400 for case (f ) and the step between isolines is 200.
For F , the maximum isoline is 4 × 10−6 for (d ) (step 2 × 10−7), 2.6 × 10−6 for (e) (same
maximum isoline in the central peak and in the lateral peaks) (step 1 × 10−7) and 6.5 × 10−6

for (f ) (step 5 × 10−7). In each picture, the zero isoline is given as a dashed line.

decrease of l increases the sidewall influence, which results in the stabilization of the
basic state (general increase of the critical thresholds) and in the earlier transition
to the sidewall instability mode (smaller values of Prt ). If the induced modifications
remain small when l is changed from 4 to 3, they become important for l = 1.5 and
really strong for l = 1. In particular, it is worth to note the strong shift of the transition
between the two hydrodynamic modes towards very small values of Pr (Prt ≈ 0.001 for
l =1), which means that for strongly confined channels only the sidewall instability will
be observable for usual low-Prandtl-number fluids. The evolution of the perturbation
kinetic energy at threshold with the Prandtl number for l = 1 is shown in figure 13.
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number range where the transition to the sidewall instability mode occurs.

10–5 10–4 10–3 10–2 10–1 1

106

105

104

103

l = 1

1.5
3 4

Grc

Pr

Figure 12. Critical Grashof number Grc for the hydrodynamic modes versus the Prandtl
number Pr for different values of the channel aspect ratio l. The dashed line refers to the
infinite horizontal layer.

We can see that the perturbation kinetic energy evolves progressively as the value of
the Prandtl number is increased from one peak concentrated in the centre part of the
cross-section to two peaks located near the sidewalls. This behaviour, obtained for a
square cross-section cavity, corroborates what was already observed for a large extent
cavity (l = 4) through an energy analysis (figure 10).

We give a final remark related to fully three-dimensional cavities. From the studies
of Henry & Buffat (1998) and Henry & Ben Hadid (2007a), we know that for not
too small confinement (l around 2 or more), the steady solution in a side-heated
cavity evolves with the increase of the Grashof number from a long-scale unicellular
circulation to a roll-like structure. These authors mention that this evolution is the
sign of an imperfect bifurcation which is connected to the steady transition (involving
a hydrodynamic multi-roll mode) found at small Pr in the infinite layer. The present
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Figure 13. Isolines of the perturbation kinetic energy averaged in the z direction for the
hydrodynamic modes at the critical threshold in the case l = 1 for different values of the
Prandtl number: Pr = 0.001 (a), Pr = 0.002 (b), Pr = 0.004 (c), Pr = 0.1 (d ).

study indicates that similar steady transitions are found at small Pr for finite width
channels. More precisely, from figure 12, we learn that for usual low-Prandtl-number
values (0.01 � Pr � 0.026), this transition is related to the usual hydrodynamic mode
for l > 1.5, whereas for l < 1.5 it is related to the sidewall hydrodynamic mode. This
is consistent with the fact that the roll-like structure in the main circulation plane
(x =0) has been found numerically at Pr= 0.01 for l = 1.6, but not for l = 1 (Henry
& Ben Hadid 2007a), and that this structure has not been found experimentally for
l =1.3 at Pr ≈ 0.02 (Hof et al. 2004). Now, it would be interesting to more attentively
analyse the flow structures in strongly confined cavities to see if signs of the sidewall
instability could be found.

5.2.2. Oscillatory spiral mode

For the infinite layer, in the Prandtl number range from 0.14 to 0.45, the most
dangerous mode is the oscillatory spiral mode (rolls with the axis parallel to z

and associated with a zero wavenumber k) related to the development of internal
waves in a layer with stable temperature stratification; these waves propagate in the
direction perpendicular to the roll axis, i.e. in the x direction in our situation. For a
channel width equal to 6.28, this mode is already strongly stabilized comparatively
with the infinite layer case (figure 14a), but it remains the most dangerous in the
Prandtl number range from Pr = 0.15 to Pr = 0.25. This mode is still found for l = 4
(figure 14a), but the critical thresholds are already higher than those obtained for the
steady hydrodynamic modes. The dependence of the oscillation angular frequency on
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Figure 14. Critical Grashof number Grc (a) and angular frequency ωc (b) versus the Prandtl
number Pr for the oscillatory spiral mode for two channel aspect ratios: l = 6.28 (1), l = 4 (2).
The dashed line refers to the infinite horizontal layer.

the Prandtl number, displayed in figure 14(b) for the same three cases, l → ∞, l = 6.28
and l = 4, shows that the frequency increases with the increase of the corresponding
critical Grashof number.

A further decrease of l results in the sharp growth of the critical Grashof numbers
and oscillation frequencies, the decrease of the Prandtl number range where the
oscillatory spiral mode exists, and the shift of this Prandtl number range towards
smaller values of Pr. These behaviours are supported by the results presented in table 2
where, for different values of l, the minimum critical Grashof number Grcmin

, the Pr
location of this minimum Prmin and the corresponding angular frequency are given.
This table also shows that Grcmin

increases almost vertically when l approaches the
value 3.65, indicating that the oscillatory spiral mode does not exist any more for
lower values of l. We suggest that the strong stabilization of the oscillatory spiral
mode with the decrease of l could be connected to the fact that the sidewalls prevent
the natural propagation of the internal waves in the transverse x direction.
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l Grcmin
Prmin ωmin

6.28 25 234 0.198 175
6. 26 375 0.191 185
5.5 29 506 0.175 207
5. 35 096 0.154 242
4.5 45 965 0.126 297
4.2 58 260 0.105 349
4. 72 409 0.087 398
3.9 83 613 0.077 432
3.8 101 174 0.065 480
3.7 136 533 0.052 564
3.65 183 251 0.042 664

Table 2. Variation with the aspect ratio l of the minimum critical Grashof number when
varying Pr for the oscillatory spiral mode Grcmin

, the Pr location of this minimum Prmin and
the corresponding angular frequency ωmin .
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Figure 15. Critical Grashof number Grc versus the Prandtl number Pr for the steady spiral
mode for the channel aspect ratio l = 1. The dashed line refers to the infinite horizontal layer.

5.2.3. Steady spiral mode

In the case of the infinite horizontal layer between rigid conducting plates, at higher
values of the Prandtl number the steady spiral instability modes of Rayleigh-type are
the most dangerous. The origin of these modes is related to the existence of zones
with potentially unstable temperature stratification in the vicinity of the horizontal
walls (see figures 4c and 5c). For the channel with square cross-section (l = 1), the
results show that at Prandtl numbers higher than 0.3, the most dangerous modes are
also the steady spiral instability modes of Rayleigh-type. These modes are strongly
stabilized by the transverse confinement compared to the infinite layer case (figure 15),
similarly to what was found for the oscillatory spiral modes. The steady spiral modes,
however, do not disappear with the decrease of the channel width l and are still
effective for widths smaller than 1. This can be related to the fact that the Rayleigh-
type perturbations (corresponding to almost square rolls) develop in the relatively thin
layers of inverse stratification near the top and bottom of the channel, so that their
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wavelength is quite short, around 0.8 times the height of the channel according to the
infinite layer results. This implies that a channel with l = 0.8 can still accommodate
two counter-rotating rolls, and even that a channel with l = 0.4 can still accommodate
one of these rolls. Note finally that with the increase of the channel width, the critical
curve for the steady spiral mode is shifted downwards and approaches the critical
curve obtained for the infinite layer.

6. Conclusion
In this paper, we have studied the steady convective flows arising in horizontal

channels of rectangular cross-section submitted to a longitudinal temperature gradient
and the stability of these flows with respect to three-dimensional perturbations. The
structure of the basic flow in the case of a channel with a finite transverse width differs
from the flow structure in the layer of infinite extent. The modifications are qualitative
and not only due to the trivial effect of convective flow braking near the channel
sidewalls. Namely, at non-zero Prandtl number values, a transverse four-vortex flow
arises and leads to the modification of the longitudinal convective flow. These four
vortices are generated by the horizontal temperature difference between the sidewalls
and the central region of the channel. Indeed, in the upper part of this central region
heat is brought by the convective flow from the hot end zone, whereas in the lower
part a cooling is induced by a cold convective flow coming from the cold end zone.
With the growth of the channel transverse width, the flow in the central part becomes
similar to that observed in the infinite layer, and the transverse flow, with only weak
changes of intensity, is now concentrated near the sidewalls.

The peculiarities of the structure of the basic flow, uniform along the channel
length, predefine to a large extent the behaviour of the small perturbations which
develop in this flow. As well as in the case of the infinite layer, at low values of
the Prandtl number, the main instability mechanism is of hydrodynamic origin and
related to the development of perturbations at the counter stream boundary, in
the region where the second derivative of the vertical profile of the basic velocity
changes its sign. The increase of the Prandtl number leads to the stabilization of
this instability, due to a stable temperature stratification in the region where the
perturbations develop. Differences are induced, however, by the finite channel width.
First of all, the stabilization occurs earlier since the arising transverse flow leads to
the decrease of the longitudinal flow gradients near the channel axis. But the main
feature is the appearance of a new instability mode, denoted as sidewall mode. This
new hydrodynamic mode develops near the sidewalls because the transverse flow
leads to an increase of the shear in these zones compared to the central part of
the channel. The stabilization effect with the increase of the Prandtl number is less
effective for this mode than for the usual hydrodynamic mode. This is due to the fact
that the increase of Pr also induces the growth of the transverse flow and thus the
growth of the shear in the sidewall regions, which counteract the stabilization effect
due to the temperature stratification. As a result, the stabilization of this mode occurs
more slowly, and at large enough Prandtl numbers just the sidewall mode becomes
responsible for the instability. Note that this sidewall mode is obtained for any width
of the cross-section, and from this point of view, the infinite layer case is not the limit
case for the channel with finite cross-section width. However, one can expect that at
large values of the cross-section width, the nonlinear convection developing in the
sidewall areas will not penetrate deeply towards the central zone where the situation
will thus be close to the case of the infinite layer.
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Figure 16. Critical Grashof number Grc versus the Prandtl number Pr for the different
instability modes in the whole investigated Prandtl number range: solid lines for the channel
aspect ratio l = 1, dashed lines for the infinite horizontal layer. The labels a and a ’ refer to the
hydrodynamic mode, the label b to the oscillatory spiral mode and the labels c and c’ to the
steady spiral mode.

Concerning the two spiral instabilities which appear for larger Prandtl numbers
in the infinite layer case, they still exist for large-width channels, but with critical
thresholds substantially increased compared to the infinite layer. When the channel
width is further decreased, the thresholds evolve to still larger critical values. This
increase of the thresholds, however, is quite continuous for the steady spiral mode,
so that this mode can be found even for small-width channels, whereas a very sharp
increase is found for the oscillatory spiral mode around l = 3.65, which corresponds
to the disappearance of this mode for smaller channel widths.

The influence of the channel width on the development of the instabilities is
summarized in figure 16 where the thresholds for the different instabilities are
given for l → ∞ (infinite layer) and l = 1 (square cross-section): we clearly see
the general stabilization effect as the width is decreased and the evolution of the most
dangerous modes with the appearance of the new sidewall hydrodynamic mode and
the disappearance of the oscillatory spiral mode.

Further studies concerning the stabilization of these buoyant flows by constant
magnetic fields are reported in the companion paper by Lyubimov et al. (2008).
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